
BYV27-600

SINTERED GLASS JUNCTION ULTRAFAST AVALANCHE RECTIFIER VOLTAGE: 600V CURRENT: 1.6A

FEATURE

Glass passivated High maximum operating temperature Low leakage current Excellent stability Guaranteed avalanche energy absorption capability

MECHANICAL DATA

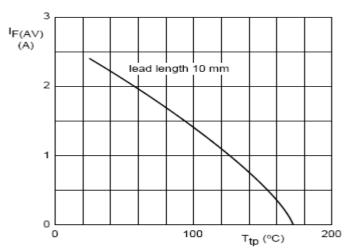
Case: SOD-57 sintered glass case Terminal: Plated axial leads solderable per MIL-STD 202E, method 208C Polarity: color band denotes cathode end Mounting position: any

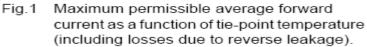
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated)

		SYMBOL	BYV27-600	units
Maximum Recurrent Peak Reverse Voltage		V _{RRM}	600	V
Maximum RMS Voltage		V _{RMS}	420	V
Maximum DC blocking Voltage		V _{DC}	600	V
Reverse avalanche breakdown voltage at IR = 0.1 mA		V _{(BR)R}	675min	V
Maximum Average Forward Rectified Current $3/8$ " lead length at Ttp = $85^{\circ}C$		I _{FAV}	1.6	A
Non-repetitive Peak Forward Current at t=10ms half sine wave		I _{FSM}	40	А
Maximum Forward Voltage at Forward Current 2.0A		V _F	1.25	V
Non-repetitive peak reverse avalanche energy (Note 1)		E _{RSM}	20	mJ
Maximum DC Reverse Current at rated DC blocking voltage	Та =25°С Та =165°С	I _R	5.0 150.0	μΑ
Maximum Reverse Recovery Time	(Note 2)	Trr	50	nS
Diode Capacitance	(Note 3)	C _d	65	pF
Typical Thermal Resistance	(Note 4)	R _{th(ja)}	100	K/W
Storage and Operating Junction Temperature		Tstg, Tj	-65 to +175	°C

Note:


1. R=400mA; Tj=Tjmax prior to surge; inductive load switched off


2. Reverse Recovery Condition If =0.5A, Ir =1.0A, Irr =0.25A

3. Measured at 1.0 MHz and applied reverse voltage of 0Vdc

4. Device mounted on an epoxy-glass printed-circuit board, 1.5mm thick; thickness of Cu-layer \ge 40 μ m

RATINGS AND CHARACTERISTIC CURVES BYV27-600

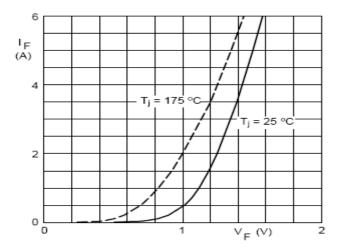


Fig.3 Forward current as a function of forward voltage; maximum values.

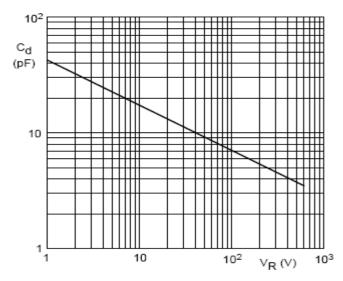


Fig.5 Diode capacitance as a function of reverse voltage; typical values.

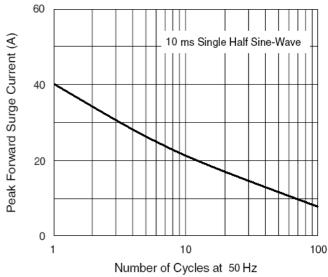


Fig.2 Maximum non-repetitive peak forward surge current

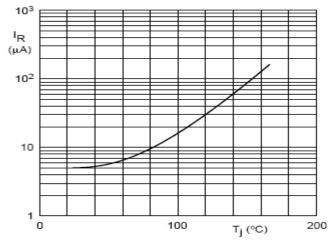


Fig.4 Reverse current as a function of junction temperature; maximum values.

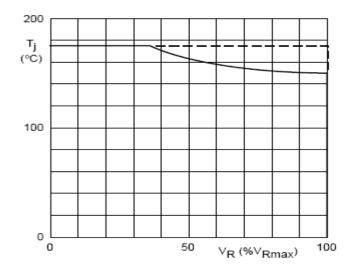


Fig.6 Maximum permissible junction temperature as a function of maximum reverse voltage percentage.

www.gulfsemi.com